DateResearch CategoryCo-Authors

Co-Authors

Amir, A.Avraham, T.Ben-David, S.Berengolts, A.Beyar, R.Brand, Y.Bruckstein, A.M.Devir, D.Devir, Z.Dragu, R.Efrat, A.Eldar, Y.Engbers, E.A.Engel, A.Fischer, M.Ghersin, E.Glazer, AGlazer, A.Golubchyck, R.Gotsman, C.Gousseau, Y.Gurevich, I.Hjaltason, G.R.Hoffman, M.Jacobs, D.Jacobs, D.J.Katzir, N.Kinoshita, K.Kiryati, N.Kolomenkin, M.Koplowitz, J.Leichter, I.Lessick, J.Levy, A.Lindenbaum, MLindenbaum, M.Markovitch, SMarkovitch, S.Miaskouvskey, A.Moses, Y.Murase, H.Osadchy, M.Osdachy, R.Peles, D.Polak, S.Porat, M.Sandler, R.Rivlin, E.Rozenfeld, S.Rudshtein, A.Rusakov, D.Salman, M.Samet, H.Sandler, R.Sharir, M.Shimshoni, I.Smeulders, A.W.M.Toledano, M.Wagner, I.A.Weissbrod, OYeshurun, Y.Yokozawa, K.Zeevi, Y.Y.


Amir, A.

  1. Amir, A. and Lindenbaum, M.. Ground from Figure Discrimination. Comp. Vis. Im. Understanding, 76(1):7–18, October 1999. BibTeX    
  2. Amir, A. and Lindenbaum, M.. A Generic Grouping Algorithm and its Quantitative Analysis. PAMI, 20(2):168–185, 1998. BibTeX    
  3. Amir, A. and Lindenbaum, M.. Grouping based Non-additive Verification. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(2):186–192, 1998. See CIS Report 9518, CS Dept. Technion, 1996. BibTeX    
  4. Amir, A. and Lindenbaum, M.. Ground from Figure Discrimination. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR98, pp. 521–527, 1998. BibTeX    
  5. Amir, A. and Lindenbaum, M.. Grouping based Non-additive Verification. In C. Arcelli, L.P. Cordella, and G. Saniti di Baja, editors, pp. 1–10, 1997. BibTeX    
  6. Amir, A. and Lindenbaum, M.. Grouping based Non-Additive Verification. Proc. Third International Workshop on Visual form, 1997. BibTeX    
  7. Amir, A. and Lindenbaum, M.. Quantitative Analysis of Grouping Processes. In Proc. of the 4th European conference on Computer Vision - ECCV96, pp. I:371–384, 1996. BibTeX    
Back to Top

Avraham, T.

  1. Avraham, T. and Lindenbaum, M.. Learning Appearance Transfer for Person Re-Identification. In Gong, S., Cristani, M., Yan, S., and Loy, C.C., editors, Springer, 2013. BibTeX    
  2. Brand, Y., Avraham, T., and Lindenbaum, M. . Transitive Re-identification. In British Machine Vision conference, BMVC-13, 2013. BibTeX    
  3. Avraham, T., Gurevich, I., Lindenbaum, M., and Markovitch, S.. Learning Implicit Transfer for Person Re-identification. In 1st International Workshop on Re-Identification (Re-Id 2012) In conjunction with ECCV 2012, LNCS 7583,, pp. 381–390, 2012. BibTeX    
  4. Avraham, T., Gurevich, I., and Lindenbaum, M.. Multiple Region Categorization for Scenery Images. In the 16th International Conference on Image Analysis and Processing, pp. 38–47, 2011. BibTeX    
  5. Avraham, T., Yeshurun, Y., and Lindenbaum, M.. Visual searchModeling Combined Proximity-Similarity Effects in Visual Search. J. Vision, 11(11), 2011. BibTeX    
  6. Avraham, T. and Lindenbaum, M.. Esaliency(Extended Saliency): MeaningfulAttention using Stochastic Image Modeling. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(4):693–708, 2010. BibTeX    
  7. Avraham, T. and Lindenbaum, M.. Non-local Characterization of Scenery Images: Statistics, 3D Reasoning, and a Generative Model. In ECCV (5), pp. 99–112, 2010. BibTeX    
  8. Yeshurun, Y., Avraham, T., and Lindenbaum, M.. Evaluating the ability of visual search models suggested for computer-vision to predict human performance. In Proc. Vision Science Society Annual Meeting (VSS07), pp. 722, 2007. (abstract) BibTeX    
  9. Avraham, T. and Lindenbaum, M.. Attention-based Dynamic Visual Search UsingInner-Scene Similarity: Algorithms and Bounds. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(2):251– 264, 2006. BibTeX    
  10. Avraham, T. and Lindenbaum, M.. Extended Saliency - An attention mechanism for multiple target scenes. In Int. Workshop on the Representation and Use of Prior Knowledge in Vision (ECCV workshop), 2006. BibTeX    
  11. Avraham, T., Yeshurun, Y., and Lindenbaum, M.. Predicting Visual-Search Performance by Quantifying Stimuli Similarities. Journal of Vision, 2006. BibTeX    
  12. Avraham, T. and Lindenbaum, M.. Inherent Limitations of Visual Search and the Role of Inner-scene Similarity. In L. Paletta et al., editors, Lecture Notes in Computer Science , pp. 16–28, Springer-Verlag, Heidelberg, 2005. BibTeX    
  13. Avraham, T. and Lindenbaum, M.. Dynamic Visual Search Using Inner-Scene Similarity:Algorithms and Inherent Limitations. In Proc. of the 8th European Conference on Computer Vision - ECCV04, pp. 58–70, 2004. BibTeX    
  14. Avraham, T. and Lindenbaum, M.. Inherent limitations of Visual Search and the Role of Inner-Scene Similarity. In International Workshop on Attention and Performance in Computational Vision (WAPCV04), 2004. BibTeX    
Back to Top

Ben-David, S.

  1. Lindenbaum, M. and Ben-David, S.. VC-Dimension Analysis of Object Recognition Tasks. Journal of Mathematical Imaging and Vision, 10(1):27–49, 1999. BibTeX    
  2. Ben-David, S. and Lindenbaum, M.. Localization vs. Identification of Semi-Algebraic Sets. Machine Learning, 32:207–224, 1998. BibTeX    
  3. Ben-David, S. and Lindenbaum, M.. Learning Distributions by their Density Levels - A Paradigmfor Learning Without a Teacher. Journal of Computer and System Science, 55(1):171–181, 1997. BibTeX    
  4. Ben-David, S. and Lindenbaum, M.. Learning Distributions by their Density Levels - A Paradigm for Learning Without a Teacher. In Proc. of the Second European Conference on Computational Learning Theory, 1995. BibTeX    
  5. Lindenbaum, M. and Ben-David, S.. Applying VC-dimension Analysis to Object Recognition. In Proc. of the 3rd European conference on Computer Vision - ECCV00, pp. 239–240, 1994. BibTeX    
  6. Lindenbaum, M. and Ben-David, S.. Applying VC-dimension Analysis to 3D Object Recognition from Perspective Projections. In Proceedings of the 12th National Conf. on Artificial Intelligence (AAAI), pp. 985–990, 1994. BibTeX    
  7. Ben-David, S. and Lindenbaum, M.. Localization vs. Identification of Semi-Algebraic Sets. In Proc. 6th ACM Conference on Computational Learning Theory, pp. 327–336, 1993. BibTeX    
Back to Top

Berengolts, A.

  1. Berengolts, A. and Lindenbaum, M.. On the Distribution of Saliency. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(12):1973–1990, 2006. BibTeX    
  2. Berengolts, A. and Lindenbaum, M.. On the distribution of Saliency. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR04, pp. II: 543–549, 2004. BibTeX    
  3. Berengolts, A. and Lindenbaum, M.. On the Performance of Connected Components Grouping. Int. J. of Computer Vision, 41(3):195–216, 2001. BibTeX    
  4. Berengolts, A. and Lindenbaum, M.. An Observation on Saliency. In K.L. Boyer and S. Sarkar, editors, Kluwer, 2000. BibTeX    
  5. Lindenbaum, M. and Berengolts, A.. A Probabilistic Interpretation of the Saliency Network. In Proc. of the 6th European conference on Computer Vision - ECCV00, pp. II:257–272, 2000. BibTeX    
  6. Berengolts, A. and Lindenbaum, M.. On the Performance of Connected Components Grouping. In Presented the IEEE Workshop on perceptual Organization in Computer Vision (POCV99), 1998. See CIS Report 9905, CS Dept. Technion, 1999. BibTeX    
Back to Top

Beyar, R.

  1. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
Back to Top

Brand, Y.

  1. Brand, Y., Avraham, T., and Lindenbaum, M. . Transitive Re-identification. In British Machine Vision conference, BMVC-13, 2013. BibTeX    
Back to Top

Bruckstein, A.M.

  1. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. ANTS: Agents, Networks, Trees, and Subgraphs. In pp. 915–926, North Holland, 2000. BibTeX    
  2. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. MAC vs. PC - Determinism and Randomness as Complementary Approaches to Robotic Exploration of Continuous Unknown Domains. International Journal of Robotics Research, 19(1):12–31, 2000. BibTeX    
  3. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Distributed Covering by Ant-Robots using Evaporating Traces. IEEE Transactions on Robotics and Automation, 15(5):918–933, 1999. BibTeX    
  4. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Efficiently Searching a Graph by a Smell Oriented Vertex Process. Annals of Mathematics and Artificial Intelligence, 24:211–223, 1998. BibTeX    
  5. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Robotic Exploration, Brownian Motion and Electrical Resistance. In Random'98, 2nd International Workshop on Randomization andApproximation Techniques in Computer Science, pp. 116–130, Barcelona, 1998. BibTeX    
  6. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Efficiently Exploring a Continuous Unknown Domain by an Ant-Inspired Process. In ANTS'98 - From Ant Colonies to Artificial Ants: 1st International Workshop on Ant Colony Optimization , Brussels, October 1998. BibTeX    
  7. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. On-Line Graph Searching by a Smell-Oriented Vertex Process. In AAAI-97 Workshop on On-line search, pp. 122–125, 1997. BibTeX    
  8. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Smell as a Computational Resource - A Lesson We Can Learn from the Ant. In Proc. ISTCS'96 - 4th Israel Symposium on the Theory of Computing and Systems, pp. 219–230, 1996. BibTeX    
  9. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Ant-Algorithms for Cooperative Search in the Presence of Sensing-Errors. In Proc. 26th Israeli Conf. on Mechanical Engineering, 1996. BibTeX    
  10. Lindenbaum, M. and Bruckstein, A.M.. Blind Approximation of Planar Convex shapes. In Y.L. O, A. Toet, D. Foster, H.J.A.M. Heijmans, and P. Meer, editors, NATO ASI Series, Springer, 1994. BibTeX    
  11. Lindenbaum, M. and Bruckstein, A.M.. Blind Approximation of Planar Convex shapes. IEEE Trans. on Robotics and Automation, RA-10(4):517–529, 1994. BibTeX    
  12. Lindenbaum, M., Fischer, M., and Bruckstein, A.M.. On Gabor's Contribution to Image Enhancement. Pattern Recognition, 27:1–8, 1994. BibTeX    
  13. Lindenbaum, M. and Bruckstein, A.M.. On Recursive $O(N)$ Partition of a Digital Curve into Digital Straight Segments. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-15(9):949–953, 1993. BibTeX    
  14. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity-Invariant Signatures for Partially Occluded Planar Shapes. Int. J. of Computer Vision, 7(3):271–285, April 1992. BibTeX    
  15. Lindenbaum, M. and Bruckstein, A.M.. Parallel Strategies for Geometric Probing. Journal of Algorithms, 13:320–349, 1992. BibTeX    
  16. Kiryati, N., Lindenbaum, M., and Bruckstein, A.M. . Digital or Analog Hough Transform?. Pattern Recognition Letters, 12:291–297, 1991. BibTeX    
  17. Lindenbaum, M. and Bruckstein, A.M.. Reconstruction of Polygonal Sets by Constrained and Unconstrained double probing. Annals of Mathematics and Artificial Intelligence, 4:345–362, 1991. BibTeX    
  18. Lindenbaum, M. and Bruckstein, A.M.. Parallel Strategies for Geometric Probing. In Proc. IEEE Conference on Robotics and Automation, Sacramento, May 1991. BibTeX    
  19. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity Invariant Recognition of Partially Occluded Curves and Shapes. In Proc. 7th Israeli Conference on Artificial Intelligence Vision and Pattern Recognition, Tel-Aviv, 1990. Also in \em Proc. National Conference on Data Processing, Jerusalem, November 1992. BibTeX    
  20. Kiryati, N., Lindenbaum, M., and Bruckstein, A.M.. Digital or Analog Hough Transform?. In British Machine Vision Conference (BMVC90), Oxford, September 1990. BibTeX    
  21. Koplowitz, J., Lindenbaum, M., and Bruckstein, A.M.. The Number of Digital Straight Lines on an $N\times N$ Grid. IEEE Trans. Inform. Theory, IT-36:192–197, 1990. BibTeX    
  22. Lindenbaum, M. and Bruckstein, A.M.. Reconstruction of Convex Polygon from Binary perspective Projections. Pattern Recognition, 23:1243–1350, 1990. BibTeX    
  23. Lindenbaum, M. and Bruckstein, A.M.. Geometric Probing using Composite probes. In Proc. 6th Israeli Conference on Artificial Intelligence Vision and Pattern Recognition, Tel Aviv, December 1989. BibTeX    
  24. Koplowitz, J., Lindenbaum, M., and Bruckstein, A.M.. On the Number of Digital Straight Lines. In Proc. 22nd Conference on Information Sciences and Control, Princeton, March 1988. BibTeX    
  25. Lindenbaum, M. and Bruckstein, A.M.. Determining Object Shape from Local Velocity Measurements. Pattern Recognition, 21:591–606, 1988. BibTeX    
  26. Lindenbaum, M., Koplowitz, J., and Bruckstein, A.M.. On the Number of Digital Straight Lines on an $N\times N$ Grid. In Proc. Conf. Computer Vision and Pattern Recognition(CVPR), Ann-Arbor, June 1988. BibTeX    
  27. Lindenbaum, M. and Bruckstein, A.M.. Reconstructing Convex Sets from Support Hyper-plane Measurements. In Proc. French-Israel Binational Symposium on Advanced Robotics, Theory and Practice, Tel Aviv, May 1988. BibTeX    
  28. Lindenbaum, M. and Bruckstein, A.M.. Reconstructing a Convex Polygon from Binary Perspective Projections. In Proc. 16th IEEE (Israel) Conference, Tel Aviv, March 1988. BibTeX    
  29. Bruckstein, A.M. and Lindenbaum, M.. On a Multiple Registration Problem. In Proc. 24th Allerton Conference on Communication, Control and Computing, Monticello, Illinois, October 1986. BibTeX    
Back to Top

Devir, D.

  1. Devir, D. and Lindenbaum, M.. Adaptive Range Sampling Using a Stochastic Model. Journal of Computing and Information Science in Engineering, 7(1):20–25, 2007. BibTeX    
Back to Top

Devir, Z.

  1. Devir, Z. and Lindenbaum, M.. Blind progressive wavelet sampling. IEEE Trans. Image Processing, 21 (4):1478–1487, 2012. BibTeX    
  2. Devir, Z. and Lindenbaum, M.. Generalized Blind Sampling of Images. In International Conference on Image Processing - ICIP08, pp. 2904–2907, 2008. BibTeX    
Back to Top

Dragu, R.

  1. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
Back to Top

Efrat, A.

  1. Efrat, A., Lindenbaum, M., and Sharir, M.. Finding Maximally Consistent Sets of Halfspaces. In Proceedings of the Fifth Canadian Conference on Computational Geometry, pp. 432–436, 1992. BibTeX    
Back to Top

Eldar, Y.

  1. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. IEEE Transactions on Image Processing, IP-6(9):1305–1315, 1997. BibTeX    
  2. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 93–97, 1994. BibTeX    
Back to Top

Engbers, E.A.

  1. Engbers, E.A., Lindenbaum, M., and Smeulders, A.W.M.. An Information-Based Measure for Grouping Quality. In Proc. of the 8th European conference on Computer Vision - ECCV04, pp. 392–404, 2004. BibTeX    
Back to Top

Engel, A.

  1. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
Back to Top

Fischer, M.

  1. Lindenbaum, M., Fischer, M., and Bruckstein, A.M.. On Gabor's Contribution to Image Enhancement. Pattern Recognition, 27:1–8, 1994. BibTeX    
Back to Top

Ghersin, E.

  1. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
Back to Top

Glazer, A

  1. Glazer, A, Weissbrod, O, Lindenbaum, M, and Markovitch, S. Hierarchical MV-sets for Hierarchical Clustering. In The 28th Conference on Neural Information Processing Systems (NIPS-2014), 2014. BibTeX    
Back to Top

Glazer, A.

  1. Glazer, A., Lindenbaum, M., and Markovitch, S.. q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions. In The 27th Conference on Neural Information Processing Systems (NIPS-2013), 2013. BibTeX    
  2. Glazer, A., Lindenbaum, M., and Markovitch, S.. Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data. In The 26th Conference on Neural Information Processing Systems (NIPS-2012), pp. 737–745, 2012. BibTeX    
  3. Glazer, A., Lindenbaum, M., and Markovitch, S.. One-Class Background Model. In 1st ACCV Workshop on Background Models Challenge (BMC), pp. 301–307, 2012. BibTeX    
  4. Glazer, A., Lindenbaum, M., and Markovitch, S.. Feature Shift Detection. In 21st International Conference on Pattern Recognition (ICPR-2012), pp. 1383–1386, 2012. BibTeX    
Back to Top

Golubchyck, R.

  1. Golubchyck, R. and Lindenbaum, M.. The analysis of Saliency Processes and its Application to grouping Cues Design. In Int. workshop on Content Based Multimedia Indexing, pp. 18–24, 2007. BibTeX    
Back to Top

Gotsman, C.

  1. Gotsman, C. and Lindenbaum, M.. On the Metric Properties of Discrete Space Filling Curves. IEEE Transactions on Image Processing, IP-5:794–797, 1996. BibTeX    
  2. Gotsman, C. and Lindenbaum, M.. Euclidean Voronoi labeling on the multidimensional grid. Pattern Recognition Letters, 16:409–415, 1995. BibTeX    
  3. Gotsman, C. and Lindenbaum, M.. On the Metric Properties of Discrete Space Filling Curves. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 98–102, 1994. BibTeX    
Back to Top

Gousseau, Y.

  1. Miaskouvskey, A., Gousseau, Y., and Lindenbaum, M.. Beyond independence: An extension of the a contrario decision procedure. In Int. J. Computer Vision, pp. 22–44, 2013. BibTeX    
Back to Top

Gurevich, I.

  1. Avraham, T., Gurevich, I., Lindenbaum, M., and Markovitch, S.. Learning Implicit Transfer for Person Re-identification. In 1st International Workshop on Re-Identification (Re-Id 2012) In conjunction with ECCV 2012, LNCS 7583,, pp. 381–390, 2012. BibTeX    
  2. Avraham, T., Gurevich, I., and Lindenbaum, M.. Multiple Region Categorization for Scenery Images. In the 16th International Conference on Image Analysis and Processing, pp. 38–47, 2011. BibTeX    
Back to Top

Hjaltason, G.R.

  1. Lindenbaum, M., Samet, H., and Hjaltason, G.R.. A Probabilistic Analysis of Trie-Based Sorting ofLarge Collections of Line Segments in Spatial Databases. SIAM Journal on Computing, 35(1):22–58, 2005. BibTeX    
Back to Top

Hoffman, M.

  1. Hoffman, M. and Lindenbaum, M.. Some tradeoffs and a new algorithm for Geometric Hashing. In Proc. of the 13th International Conference on Pattern Recognition - ICPR98, pp. 1700–1704, 1998. BibTeX    
Back to Top

Jacobs, D.

  1. Osadchy, M., Jacobs, D., and Lindenbaum, M.. Surface Dependent Representations for Illumination Insensitive Image Comparison. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(1):98–111, January 2007. BibTeX    
  2. Osadchy, M., Jacobs, D., and Lindenbaum, M.. On the Equivalence of Common Approaches to Lighting Insensitive Recognition. In Proc. Int. Conference on Computer Vision - ICCV05, pp. II: 1721–1726, 2005. BibTeX    
  3. Osadchy, M., Lindenbaum, M., and Jacobs, D.. Whitening for Photometric Comparison of Smooth Surfaces under VaryingIllumination. In Proc. of the 8th European Conference on Computer Vision - ECCV04, pp. 217–228, 2004. BibTeX    
  4. Jacobs, D. and Lindenbaum, M.. Eds. Perceptual Organization in Computer Vision. Two special sections of \em IEEE Trans. on Pattern Analysis and Machine Intelligence IEEE-PAMI 25 (4), 2003 and IEEE-PAMI 25(6), 2003, 2003. BibTeX    
Back to Top

Jacobs, D.J.

  1. Osdachy, R., Lindenbaum, M., and Jacobs, D.J.. Whitening for photometric comparison of smooth surfaces. In Int'l Workshop on Statistical and Computational Theories in Vision, 2003. BibTeX    
Back to Top

Katzir, N.

  1. Katzir, N., Lindenbaum, M., and Porat, M.. Curve Segmentation under Partial Occlusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 16(5):513–519, May 1994. BibTeX    
  2. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity-Invariant Signatures for Partially Occluded Planar Shapes. Int. J. of Computer Vision, 7(3):271–285, April 1992. BibTeX    
  3. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity Invariant Recognition of Partially Occluded Curves and Shapes. In Proc. 7th Israeli Conference on Artificial Intelligence Vision and Pattern Recognition, Tel-Aviv, 1990. Also in \em Proc. National Conference on Data Processing, Jerusalem, November 1992. BibTeX    
  4. Katzir, N., Lindenbaum, M., and Porat, M.. Planar curve segmentation for recognition of partially occluded shapes. In Proc. 10th Int. Conf. Pattern Recognition (ICPR), pp. 842–846, Atlantic City, June 1990. BibTeX    
Back to Top

Kinoshita, K.

  1. Kinoshita, K. and Lindenbaum, M.. Camera model selection based on Geometric AIC. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR00, pp. II:514–519, 2000. BibTeX    
  2. Kinoshita, K. and Lindenbaum, M.. Robotic Control with Partial Visual Information. Int. J. of Computer Vision, 37(1):65–78, 2000. BibTeX    
  3. Kinoshita, K. and Lindenbaum, M.. Robotic Control with Partial Visual Information. In Proc. Int. Conference on Computer Vision - ICCV98, pp. 883–888, 1998. BibTeX    
Back to Top

Kiryati, N.

  1. Kiryati, N., Lindenbaum, M., and Bruckstein, A.M. . Digital or Analog Hough Transform?. Pattern Recognition Letters, 12:291–297, 1991. BibTeX    
  2. Kiryati, N., Lindenbaum, M., and Bruckstein, A.M.. Digital or Analog Hough Transform?. In British Machine Vision Conference (BMVC90), Oxford, September 1990. BibTeX    
Back to Top

Kolomenkin, M.

  1. Kolomenkin, M., Polak, S., Shimshoni, I., and Lindenbaum, M.. A Geometric Voting Algorithm for Star Trackers. IEEE Trans. on Aerospace and Electronic Systems, 44(2):441–456, 2008. BibTeX    
Back to Top

Koplowitz, J.

  1. Lindenbaum, M. and Koplowitz, J.. A new Parameterization of Digital Straight Lines. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-13:847–852, 1991. BibTeX    
  2. Koplowitz, J., Lindenbaum, M., and Bruckstein, A.M.. The Number of Digital Straight Lines on an $N\times N$ Grid. IEEE Trans. Inform. Theory, IT-36:192–197, 1990. BibTeX    
  3. Koplowitz, J., Lindenbaum, M., and Bruckstein, A.M.. On the Number of Digital Straight Lines. In Proc. 22nd Conference on Information Sciences and Control, Princeton, March 1988. BibTeX    
  4. Lindenbaum, M., Koplowitz, J., and Bruckstein, A.M.. On the Number of Digital Straight Lines on an $N\times N$ Grid. In Proc. Conf. Computer Vision and Pattern Recognition(CVPR), Ann-Arbor, June 1988. BibTeX    
  5. Lindenbaum, M. and Koplowitz, J.. Compression of Chain Codes using Digital Straight Line Segments. Pattern Recognition Letters, 7:167–171, 1988. BibTeX    
Back to Top

Leichter, I.

  1. Leichter, I., Lindenbaum, M., and Rivlin, E.. Mean Shift Tracking with Multiple Reference Color Histograms. Comp. Vis. Im. Understanding, 114(3):400–408, 2010. BibTeX    
  2. Leichter, I., Lindenbaum, M., and Rivlin, E.. Tracking by Affine Kernel Transformations Using Color and Boundary Cues. \em IEEE Trans. Pattern Analysis and Machine Intelligence, 31(1):164–173, 2009. BibTeX    
  3. Leichter, I. and Lindenbaum, M.. Boundary Ownership by Lifting to 2.5D. In Proc. IEEE Conf. Computer Vision - ICCV09, 2009. BibTeX    
  4. Leichter, I., Lindenbaum, M., and Rivlin, E.. Bittracker - A Bitmap Tracker for Visual Tracking under Very General Conditions. IEEE Trans. Pattern Analysis and Machine Intelligence, 30(9):1572–1588, 2008. BibTeX    
  5. Leichter, I., Lindenbaum, M., and Rivlin, E.. Visual Tracking by Affine Kernel Fitting Using Color and Object Boundary. In Proc. IEEE International Conference on Computer Vision (ICCV'07), 2007. BibTeX    
  6. Leichter, I., Lindenbaum, M., and Rivlin, E.. A General Framework for Combining Visual Trackers -- The “Black Boxes” Approach. Int. J. of Computer Vision, 67(3):343–363, 2006. BibTeX    
  7. Leichter, I., Lindenbaum, M., and Rivlin, E.. Bittracker - A Bitmap Tracker for Visual Tracking under Very General Conditions. In IEEE International Workshop on Visual Surveillance (ECCV workshop), pp. 17–24, 2006. BibTeX    
  8. Leichter, I., Lindenbaum, M., and Rivlin, E.. A probabilistic framework for combining tracking algorithms. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR04, pp. II: 445–451, 2004. BibTeX    
  9. Leichter, I., Lindenbaum, M., and Rivlin, E.. A probabilistic cooperation between trackers of coupled objects. In International Conference on Image Processing - ICIPO4, pp. 1045 – 1048, 2004. BibTeX    
Back to Top

Lessick, J.

  1. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
Back to Top

Levy, A.

  1. Levy, A. and Lindenbaum, M.. Sequential Karhunen-Loeve Basis Extraction and its Application to Images. IEEE Transactions on Image Processing, IP-9(8):1371–1374, 2000. BibTeX    
  2. Levy, A. and Lindenbaum, M.. Sequential Karhunen-Loeve Basis Extraction. In International Conference on Image Processing - ICIP98, 1998. Demonstrated also in ICCV01, vol II. p. 739, 2001 BibTeX    
Back to Top

Lindenbaum, M

  1. Glazer, A, Weissbrod, O, Lindenbaum, M, and Markovitch, S. Hierarchical MV-sets for Hierarchical Clustering. In The 28th Conference on Neural Information Processing Systems (NIPS-2014), 2014. BibTeX    
Back to Top

Lindenbaum, M.

  1. Avraham, T. and Lindenbaum, M.. Learning Appearance Transfer for Person Re-Identification. In Gong, S., Cristani, M., Yan, S., and Loy, C.C., editors, Springer, 2013. BibTeX    
  2. Brand, Y., Avraham, T., and Lindenbaum, M. . Transitive Re-identification. In British Machine Vision conference, BMVC-13, 2013. BibTeX    
  3. Glazer, A., Lindenbaum, M., and Markovitch, S.. q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions. In The 27th Conference on Neural Information Processing Systems (NIPS-2013), 2013. BibTeX    
  4. Miaskouvskey, A., Gousseau, Y., and Lindenbaum, M.. Beyond independence: An extension of the a contrario decision procedure. In Int. J. Computer Vision, pp. 22–44, 2013. BibTeX    
  5. Avraham, T., Gurevich, I., Lindenbaum, M., and Markovitch, S.. Learning Implicit Transfer for Person Re-identification. In 1st International Workshop on Re-Identification (Re-Id 2012) In conjunction with ECCV 2012, LNCS 7583,, pp. 381–390, 2012. BibTeX    
  6. Devir, Z. and Lindenbaum, M.. Blind progressive wavelet sampling. IEEE Trans. Image Processing, 21 (4):1478–1487, 2012. BibTeX    
  7. Glazer, A., Lindenbaum, M., and Markovitch, S.. Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data. In The 26th Conference on Neural Information Processing Systems (NIPS-2012), pp. 737–745, 2012. BibTeX    
  8. Glazer, A., Lindenbaum, M., and Markovitch, S.. One-Class Background Model. In 1st ACCV Workshop on Background Models Challenge (BMC), pp. 301–307, 2012. BibTeX    
  9. Glazer, A., Lindenbaum, M., and Markovitch, S.. Feature Shift Detection. In 21st International Conference on Pattern Recognition (ICPR-2012), pp. 1383–1386, 2012. BibTeX    
  10. Avraham, T., Gurevich, I., and Lindenbaum, M.. Multiple Region Categorization for Scenery Images. In the 16th International Conference on Image Analysis and Processing, pp. 38–47, 2011. BibTeX    
  11. Avraham, T., Yeshurun, Y., and Lindenbaum, M.. Visual searchModeling Combined Proximity-Similarity Effects in Visual Search. J. Vision, 11(11), 2011. BibTeX    
  12. Peles, D. and Lindenbaum, M.. A Segmentation Quality Measure Based on Rich Descriptors and Classification Methods. In SSVM, pp. 398–410, 2011. BibTeX    
  13. Rozenfeld, S., Shimshoni, I., and Lindenbaum, M.. Dense Mirroring Surface Recovery from 1D Homographies and Sparse Correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2):325–337, 2011. BibTeX    
  14. R. Sandler and Lindenbaum, M.. Nonnegative Matrix Factorization with Earth Mover's Distance Metric for Image Analysis. IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1590–1602, 2011. BibTeX    
  15. Avraham, T. and Lindenbaum, M.. Esaliency(Extended Saliency): MeaningfulAttention using Stochastic Image Modeling. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(4):693–708, 2010. BibTeX    
  16. Avraham, T. and Lindenbaum, M.. Non-local Characterization of Scenery Images: Statistics, 3D Reasoning, and a Generative Model. In ECCV (5), pp. 99–112, 2010. BibTeX    
  17. Leichter, I., Lindenbaum, M., and Rivlin, E.. Mean Shift Tracking with Multiple Reference Color Histograms. Comp. Vis. Im. Understanding, 114(3):400–408, 2010. BibTeX    
  18. Leichter, I., Lindenbaum, M., and Rivlin, E.. Tracking by Affine Kernel Transformations Using Color and Boundary Cues. \em IEEE Trans. Pattern Analysis and Machine Intelligence, 31(1):164–173, 2009. BibTeX    
  19. Leichter, I. and Lindenbaum, M.. Boundary Ownership by Lifting to 2.5D. In Proc. IEEE Conf. Computer Vision - ICCV09, 2009. BibTeX    
  20. Sandler, R. and Lindenbaum, M.. Optimizing Gabor Filter Design for Texture Edge Detection and Classification. Int. J. of Computer Vision, 84(3):308–324, 2009. BibTeX    
  21. Sandler, R. and Lindenbaum, M.. Nonnegative Matrix Factorization with Earth Movers Distance metric. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR09, 2009. BibTeX    
  22. Devir, Z. and Lindenbaum, M.. Generalized Blind Sampling of Images. In International Conference on Image Processing - ICIP08, pp. 2904–2907, 2008. BibTeX    
  23. Kolomenkin, M., Polak, S., Shimshoni, I., and Lindenbaum, M.. A Geometric Voting Algorithm for Star Trackers. IEEE Trans. on Aerospace and Electronic Systems, 44(2):441–456, 2008. BibTeX    
  24. Leichter, I., Lindenbaum, M., and Rivlin, E.. Bittracker - A Bitmap Tracker for Visual Tracking under Very General Conditions. IEEE Trans. Pattern Analysis and Machine Intelligence, 30(9):1572–1588, 2008. BibTeX    
  25. Sandler, R. and Lindenbaum, M.. Unsupervised estimation of segmentation quality using nonnegative factorization. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR08, 2008. BibTeX    
  26. Devir, D. and Lindenbaum, M.. Adaptive Range Sampling Using a Stochastic Model. Journal of Computing and Information Science in Engineering, 7(1):20–25, 2007. BibTeX    
  27. Golubchyck, R. and Lindenbaum, M.. The analysis of Saliency Processes and its Application to grouping Cues Design. In Int. workshop on Content Based Multimedia Indexing, pp. 18–24, 2007. BibTeX    
  28. Leichter, I., Lindenbaum, M., and Rivlin, E.. Visual Tracking by Affine Kernel Fitting Using Color and Object Boundary. In Proc. IEEE International Conference on Computer Vision (ICCV'07), 2007. BibTeX    
  29. Osadchy, M., Jacobs, D., and Lindenbaum, M.. Surface Dependent Representations for Illumination Insensitive Image Comparison. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(1):98–111, January 2007. BibTeX    
  30. Rozenfeld, S., Shimshoni, I., and Lindenbaum, M.. Dense mirroring surface recovery from 1D homographies and sparse correspondences. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR07, 2007. BibTeX    
  31. Yeshurun, Y., Avraham, T., and Lindenbaum, M.. Evaluating the ability of visual search models suggested for computer-vision to predict human performance. In Proc. Vision Science Society Annual Meeting (VSS07), pp. 722, 2007. (abstract) BibTeX    
  32. Avraham, T. and Lindenbaum, M.. Attention-based Dynamic Visual Search UsingInner-Scene Similarity: Algorithms and Bounds. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(2):251– 264, 2006. BibTeX    
  33. Avraham, T. and Lindenbaum, M.. Extended Saliency - An attention mechanism for multiple target scenes. In Int. Workshop on the Representation and Use of Prior Knowledge in Vision (ECCV workshop), 2006. BibTeX    
  34. Avraham, T., Yeshurun, Y., and Lindenbaum, M.. Predicting Visual-Search Performance by Quantifying Stimuli Similarities. Journal of Vision, 2006. BibTeX    
  35. Berengolts, A. and Lindenbaum, M.. On the Distribution of Saliency. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(12):1973–1990, 2006. BibTeX    
  36. Leichter, I., Lindenbaum, M., and Rivlin, E.. A General Framework for Combining Visual Trackers -- The “Black Boxes” Approach. Int. J. of Computer Vision, 67(3):343–363, 2006. BibTeX    
  37. Leichter, I., Lindenbaum, M., and Rivlin, E.. Bittracker - A Bitmap Tracker for Visual Tracking under Very General Conditions. In IEEE International Workshop on Visual Surveillance (ECCV workshop), pp. 17–24, 2006. BibTeX    
  38. Sandler, R. and Lindenbaum, M.. Gabor Filters Design for Texture Discrimination. In IEEE Workshop on Perceptual Organization in Computer Vision (CVPR workshop), pp. 178, 2006. BibTeX    
  39. Avraham, T. and Lindenbaum, M.. Inherent Limitations of Visual Search and the Role of Inner-scene Similarity. In L. Paletta et al., editors, Lecture Notes in Computer Science , pp. 16–28, Springer-Verlag, Heidelberg, 2005. BibTeX    
  40. Lindenbaum, M., Samet, H., and Hjaltason, G.R.. A Probabilistic Analysis of Trie-Based Sorting ofLarge Collections of Line Segments in Spatial Databases. SIAM Journal on Computing, 35(1):22–58, 2005. BibTeX    
  41. Osadchy, M., Jacobs, D., and Lindenbaum, M.. On the Equivalence of Common Approaches to Lighting Insensitive Recognition. In Proc. Int. Conference on Computer Vision - ICCV05, pp. II: 1721–1726, 2005. BibTeX    
  42. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
  43. Avraham, T. and Lindenbaum, M.. Dynamic Visual Search Using Inner-Scene Similarity:Algorithms and Inherent Limitations. In Proc. of the 8th European Conference on Computer Vision - ECCV04, pp. 58–70, 2004. BibTeX    
  44. Avraham, T. and Lindenbaum, M.. Inherent limitations of Visual Search and the Role of Inner-Scene Similarity. In International Workshop on Attention and Performance in Computational Vision (WAPCV04), 2004. BibTeX    
  45. Berengolts, A. and Lindenbaum, M.. On the distribution of Saliency. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR04, pp. II: 543–549, 2004. BibTeX    
  46. Engbers, E.A., Lindenbaum, M., and Smeulders, A.W.M.. An Information-Based Measure for Grouping Quality. In Proc. of the 8th European conference on Computer Vision - ECCV04, pp. 392–404, 2004. BibTeX    
  47. Leichter, I., Lindenbaum, M., and Rivlin, E.. A probabilistic framework for combining tracking algorithms. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR04, pp. II: 445–451, 2004. BibTeX    
  48. Leichter, I., Lindenbaum, M., and Rivlin, E.. A probabilistic cooperation between trackers of coupled objects. In International Conference on Image Processing - ICIPO4, pp. 1045 – 1048, 2004. BibTeX    
  49. Lindenbaum, M., Markovitch, S., and Rusakov, D.. Selective Sampling for Nearest Neighbor Classifiers. Machine Learning, 54(2):125–152, 2004. BibTeX    
  50. Osadchy, M., Lindenbaum, M., and Jacobs, D.. Whitening for Photometric Comparison of Smooth Surfaces under VaryingIllumination. In Proc. of the 8th European Conference on Computer Vision - ECCV04, pp. 217–228, 2004. BibTeX    
  51. Jacobs, D. and Lindenbaum, M.. Eds. Perceptual Organization in Computer Vision. Two special sections of \em IEEE Trans. on Pattern Analysis and Machine Intelligence IEEE-PAMI 25 (4), 2003 and IEEE-PAMI 25(6), 2003, 2003. BibTeX    
  52. Osdachy, R., Lindenbaum, M., and Jacobs, D.J.. Whitening for photometric comparison of smooth surfaces. In Int'l Workshop on Statistical and Computational Theories in Vision, 2003. BibTeX    
  53. Berengolts, A. and Lindenbaum, M.. On the Performance of Connected Components Grouping. Int. J. of Computer Vision, 41(3):195–216, 2001. BibTeX    
  54. Berengolts, A. and Lindenbaum, M.. An Observation on Saliency. In K.L. Boyer and S. Sarkar, editors, Kluwer, 2000. BibTeX    
  55. Kinoshita, K. and Lindenbaum, M.. Camera model selection based on Geometric AIC. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR00, pp. II:514–519, 2000. BibTeX    
  56. Kinoshita, K. and Lindenbaum, M.. Robotic Control with Partial Visual Information. Int. J. of Computer Vision, 37(1):65–78, 2000. BibTeX    
  57. Levy, A. and Lindenbaum, M.. Sequential Karhunen-Loeve Basis Extraction and its Application to Images. IEEE Transactions on Image Processing, IP-9(8):1371–1374, 2000. BibTeX    
  58. Lindenbaum, M. and Berengolts, A.. A Probabilistic Interpretation of the Saliency Network. In Proc. of the 6th European conference on Computer Vision - ECCV00, pp. II:257–272, 2000. BibTeX    
  59. Shimshoni, I., Moses, Y., and Lindenbaum, M.. Shape Reconstruction of 3D Bilaterally Symmetric Surfaces. Int. J. of Computer Vision, 39(2):97–110, 2000. BibTeX    
  60. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. ANTS: Agents, Networks, Trees, and Subgraphs. In pp. 915–926, North Holland, 2000. BibTeX    
  61. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. MAC vs. PC - Determinism and Randomness as Complementary Approaches to Robotic Exploration of Continuous Unknown Domains. International Journal of Robotics Research, 19(1):12–31, 2000. BibTeX    
  62. Amir, A. and Lindenbaum, M.. Ground from Figure Discrimination. Comp. Vis. Im. Understanding, 76(1):7–18, October 1999. BibTeX    
  63. Lindenbaum, M. and Ben-David, S.. VC-Dimension Analysis of Object Recognition Tasks. Journal of Mathematical Imaging and Vision, 10(1):27–49, 1999. BibTeX    
  64. Lindenbaum, M., Markovitch, S., and Rusakov, D.. Selective Sampling for Nearest Neighbor Classifiers. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 366–371, Orlando, Florida, 1999. BibTeX    
  65. Shimshoni, I., Moses, Y., and Lindenbaum, M.. Auto Photometric/Geometric Stereo from a Single Image orClass Based Reconstruction of Bilaterally Symmetric Objects. In ICIAP, pp. 76–81, 1999. BibTeX    
  66. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Distributed Covering by Ant-Robots using Evaporating Traces. IEEE Transactions on Robotics and Automation, 15(5):918–933, 1999. BibTeX    
  67. Amir, A. and Lindenbaum, M.. A Generic Grouping Algorithm and its Quantitative Analysis. PAMI, 20(2):168–185, 1998. BibTeX    
  68. Amir, A. and Lindenbaum, M.. Grouping based Non-additive Verification. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(2):186–192, 1998. See CIS Report 9518, CS Dept. Technion, 1996. BibTeX    
  69. Amir, A. and Lindenbaum, M.. Ground from Figure Discrimination. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR98, pp. 521–527, 1998. BibTeX    
  70. Ben-David, S. and Lindenbaum, M.. Localization vs. Identification of Semi-Algebraic Sets. Machine Learning, 32:207–224, 1998. BibTeX    
  71. Berengolts, A. and Lindenbaum, M.. On the Performance of Connected Components Grouping. In Presented the IEEE Workshop on perceptual Organization in Computer Vision (POCV99), 1998. See CIS Report 9905, CS Dept. Technion, 1999. BibTeX    
  72. Hoffman, M. and Lindenbaum, M.. Some tradeoffs and a new algorithm for Geometric Hashing. In Proc. of the 13th International Conference on Pattern Recognition - ICPR98, pp. 1700–1704, 1998. BibTeX    
  73. Kinoshita, K. and Lindenbaum, M.. Robotic Control with Partial Visual Information. In Proc. Int. Conference on Computer Vision - ICCV98, pp. 883–888, 1998. BibTeX    
  74. Levy, A. and Lindenbaum, M.. Sequential Karhunen-Loeve Basis Extraction. In International Conference on Image Processing - ICIP98, 1998. Demonstrated also in ICCV01, vol II. p. 739, 2001 BibTeX    
  75. Salman, M. and Lindenbaum, M.. A Layered Representation for Model-Based Filtering and Recognition. In Proc. of the 13th International Conference on Pattern Recognition - ICPR98, pp. 643–647, 1998. BibTeX    
  76. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Efficiently Searching a Graph by a Smell Oriented Vertex Process. Annals of Mathematics and Artificial Intelligence, 24:211–223, 1998. BibTeX    
  77. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Robotic Exploration, Brownian Motion and Electrical Resistance. In Random'98, 2nd International Workshop on Randomization andApproximation Techniques in Computer Science, pp. 116–130, Barcelona, 1998. BibTeX    
  78. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Efficiently Exploring a Continuous Unknown Domain by an Ant-Inspired Process. In ANTS'98 - From Ant Colonies to Artificial Ants: 1st International Workshop on Ant Colony Optimization , Brussels, October 1998. BibTeX    
  79. Amir, A. and Lindenbaum, M.. Grouping based Non-additive Verification. In C. Arcelli, L.P. Cordella, and G. Saniti di Baja, editors, pp. 1–10, 1997. BibTeX    
  80. Amir, A. and Lindenbaum, M.. Grouping based Non-Additive Verification. Proc. Third International Workshop on Visual form, 1997. BibTeX    
  81. Ben-David, S. and Lindenbaum, M.. Learning Distributions by their Density Levels - A Paradigmfor Learning Without a Teacher. Journal of Computer and System Science, 55(1):171–181, 1997. BibTeX    
  82. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. IEEE Transactions on Image Processing, IP-6(9):1305–1315, 1997. BibTeX    
  83. Lindenbaum, M.. An integrated Model for Evaluating the Amount of Data Required for Reliable Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-19(11):1251–1264, 1997. BibTeX    
  84. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. On-Line Graph Searching by a Smell-Oriented Vertex Process. In AAAI-97 Workshop on On-line search, pp. 122–125, 1997. BibTeX    
  85. Amir, A. and Lindenbaum, M.. Quantitative Analysis of Grouping Processes. In Proc. of the 4th European conference on Computer Vision - ECCV96, pp. I:371–384, 1996. BibTeX    
  86. Gotsman, C. and Lindenbaum, M.. On the Metric Properties of Discrete Space Filling Curves. IEEE Transactions on Image Processing, IP-5:794–797, 1996. BibTeX    
  87. Lindenbaum, M.. On the Amount of Information Required for Reliable Recognition. In S.Z. Li, D.P. Mital, E.K. Teoh, and H. Wang, editors, Lecture Notes on Computer Science, pp. 457–466, Springer-Verlag, 1996. BibTeX    
  88. Rudshtein, A. and Lindenbaum, M.. Quantifying the performance of feature-based recognition. In International Conference on Pattern Recognition, pp. 35–39, 1996. BibTeX    
  89. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Smell as a Computational Resource - A Lesson We Can Learn from the Ant. In Proc. ISTCS'96 - 4th Israel Symposium on the Theory of Computing and Systems, pp. 219–230, 1996. BibTeX    
  90. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Ant-Algorithms for Cooperative Search in the Presence of Sensing-Errors. In Proc. 26th Israeli Conf. on Mechanical Engineering, 1996. BibTeX    
  91. Ben-David, S. and Lindenbaum, M.. Learning Distributions by their Density Levels - A Paradigm for Learning Without a Teacher. In Proc. of the Second European Conference on Computational Learning Theory, 1995. BibTeX    
  92. Gotsman, C. and Lindenbaum, M.. Euclidean Voronoi labeling on the multidimensional grid. Pattern Recognition Letters, 16:409–415, 1995. BibTeX    
  93. Lindenbaum, M.. Bounds on Shape Recognition Performance. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-17(7):666–680, 1995. See also CIS report 9329, CS Dept. Technion, 1993 BibTeX    
  94. Lindenbaum, M.. On the Amount of Information Required for Reliable Recognition. In Proc. 2nd Asian Conference on Computer Vision (ACCV), Singapore, December 1995. (invited) BibTeX    
  95. Murase, H. and Lindenbaum, M.. Spatial Temporal adaptive Method for partial EigenstructureDecomposition of Large Image Matrices. IEEE Transactions on Image Processing, IP-4(5):620–629, 1995. BibTeX    
  96. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 93–97, 1994. BibTeX    
  97. Gotsman, C. and Lindenbaum, M.. On the Metric Properties of Discrete Space Filling Curves. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 98–102, 1994. BibTeX    
  98. Katzir, N., Lindenbaum, M., and Porat, M.. Curve Segmentation under Partial Occlusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 16(5):513–519, May 1994. BibTeX    
  99. Lindenbaum, M. and Bruckstein, A.M.. Blind Approximation of Planar Convex shapes. In Y.L. O, A. Toet, D. Foster, H.J.A.M. Heijmans, and P. Meer, editors, NATO ASI Series, Springer, 1994. BibTeX    
  100. Lindenbaum, M. and Bruckstein, A.M.. Blind Approximation of Planar Convex shapes. IEEE Trans. on Robotics and Automation, RA-10(4):517–529, 1994. BibTeX    
  101. Lindenbaum, M., Fischer, M., and Bruckstein, A.M.. On Gabor's Contribution to Image Enhancement. Pattern Recognition, 27:1–8, 1994. BibTeX    
  102. Lindenbaum, M.. On the Amount of Data Required for Reliable Recognition. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 726–729, 1994. BibTeX    
  103. Lindenbaum, M. and Ben-David, S.. Applying VC-dimension Analysis to Object Recognition. In Proc. of the 3rd European conference on Computer Vision - ECCV00, pp. 239–240, 1994. BibTeX    
  104. Lindenbaum, M. and Ben-David, S.. Applying VC-dimension Analysis to 3D Object Recognition from Perspective Projections. In Proceedings of the 12th National Conf. on Artificial Intelligence (AAAI), pp. 985–990, 1994. BibTeX    
  105. Ben-David, S. and Lindenbaum, M.. Localization vs. Identification of Semi-Algebraic Sets. In Proc. 6th ACM Conference on Computational Learning Theory, pp. 327–336, 1993. BibTeX    
  106. Lindenbaum, M. and Bruckstein, A.M.. On Recursive $O(N)$ Partition of a Digital Curve into Digital Straight Segments. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-15(9):949–953, 1993. BibTeX    
  107. Lindenbaum, M.. Bounds on Shape Recognition Performance. In Proc. of the 7th Int. Conference on Image Analysis and Processing, pp. 388–398, 1993. BibTeX    
  108. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity-Invariant Signatures for Partially Occluded Planar Shapes. Int. J. of Computer Vision, 7(3):271–285, April 1992. BibTeX    
  109. Efrat, A., Lindenbaum, M., and Sharir, M.. Finding Maximally Consistent Sets of Halfspaces. In Proceedings of the Fifth Canadian Conference on Computational Geometry, pp. 432–436, 1992. BibTeX    
  110. Lindenbaum, M. and Bruckstein, A.M.. Parallel Strategies for Geometric Probing. Journal of Algorithms, 13:320–349, 1992. BibTeX    
  111. Yokozawa, K. and Lindenbaum, M.. The effect of popout distracter in serial search. In Proceedings of the Japanese Cognitive Science Society 9th Annual Meeting, Chukyo University, Toyota city, May 1992. (in Japanese) BibTeX    
  112. Yokozawa, K. and Lindenbaum, M.. A Popout Distracter Impairs the Visual Search Performance. In Proc. of the Third International Conference on Visual Search, 1992. BibTeX    
  113. Kiryati, N., Lindenbaum, M., and Bruckstein, A.M. . Digital or Analog Hough Transform?. Pattern Recognition Letters, 12:291–297, 1991. BibTeX    
  114. Lindenbaum, M. and Koplowitz, J.. A new Parameterization of Digital Straight Lines. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-13:847–852, 1991. BibTeX    
  115. Lindenbaum, M. and Bruckstein, A.M.. Reconstruction of Polygonal Sets by Constrained and Unconstrained double probing. Annals of Mathematics and Artificial Intelligence, 4:345–362, 1991. BibTeX    
  116. Lindenbaum, M. and Bruckstein, A.M.. Parallel Strategies for Geometric Probing. In Proc. IEEE Conference on Robotics and Automation, Sacramento, May 1991. BibTeX    
  117. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity Invariant Recognition of Partially Occluded Curves and Shapes. In Proc. 7th Israeli Conference on Artificial Intelligence Vision and Pattern Recognition, Tel-Aviv, 1990. Also in \em Proc. National Conference on Data Processing, Jerusalem, November 1992. BibTeX    
  118. Katzir, N., Lindenbaum, M., and Porat, M.. Planar curve segmentation for recognition of partially occluded shapes. In Proc. 10th Int. Conf. Pattern Recognition (ICPR), pp. 842–846, Atlantic City, June 1990. BibTeX    
  119. Kiryati, N., Lindenbaum, M., and Bruckstein, A.M.. Digital or Analog Hough Transform?. In British Machine Vision Conference (BMVC90), Oxford, September 1990. BibTeX    
  120. Koplowitz, J., Lindenbaum, M., and Bruckstein, A.M.. The Number of Digital Straight Lines on an $N\times N$ Grid. IEEE Trans. Inform. Theory, IT-36:192–197, 1990. BibTeX    
  121. Lindenbaum, M. and Bruckstein, A.M.. Reconstruction of Convex Polygon from Binary perspective Projections. Pattern Recognition, 23:1243–1350, 1990. BibTeX    
  122. Lindenbaum, M. and Samet, H.. Probabilistic analysis of Geometric Hierarchical Data Structures. In Proc. 10th Int. Conf. Pattern Recognition (ICPR), Atlantic City, June 1990. BibTeX    
  123. Lindenbaum, M. and Bruckstein, A.M.. Geometric Probing using Composite probes. In Proc. 6th Israeli Conference on Artificial Intelligence Vision and Pattern Recognition, Tel Aviv, December 1989. BibTeX    
  124. Koplowitz, J., Lindenbaum, M., and Bruckstein, A.M.. On the Number of Digital Straight Lines. In Proc. 22nd Conference on Information Sciences and Control, Princeton, March 1988. BibTeX    
  125. Lindenbaum, M. and Bruckstein, A.M.. Determining Object Shape from Local Velocity Measurements. Pattern Recognition, 21:591–606, 1988. BibTeX    
  126. Lindenbaum, M., Koplowitz, J., and Bruckstein, A.M.. On the Number of Digital Straight Lines on an $N\times N$ Grid. In Proc. Conf. Computer Vision and Pattern Recognition(CVPR), Ann-Arbor, June 1988. BibTeX    
  127. Lindenbaum, M. and Koplowitz, J.. Compression of Chain Codes using Digital Straight Line Segments. Pattern Recognition Letters, 7:167–171, 1988. BibTeX    
  128. Lindenbaum, M. and Bruckstein, A.M.. Reconstructing Convex Sets from Support Hyper-plane Measurements. In Proc. French-Israel Binational Symposium on Advanced Robotics, Theory and Practice, Tel Aviv, May 1988. BibTeX    
  129. Lindenbaum, M. and Bruckstein, A.M.. Reconstructing a Convex Polygon from Binary Perspective Projections. In Proc. 16th IEEE (Israel) Conference, Tel Aviv, March 1988. BibTeX    
  130. Bruckstein, A.M. and Lindenbaum, M.. On a Multiple Registration Problem. In Proc. 24th Allerton Conference on Communication, Control and Computing, Monticello, Illinois, October 1986. BibTeX    
Back to Top

Markovitch, S

  1. Glazer, A, Weissbrod, O, Lindenbaum, M, and Markovitch, S. Hierarchical MV-sets for Hierarchical Clustering. In The 28th Conference on Neural Information Processing Systems (NIPS-2014), 2014. BibTeX    
Back to Top

Markovitch, S.

  1. Glazer, A., Lindenbaum, M., and Markovitch, S.. q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions. In The 27th Conference on Neural Information Processing Systems (NIPS-2013), 2013. BibTeX    
  2. Avraham, T., Gurevich, I., Lindenbaum, M., and Markovitch, S.. Learning Implicit Transfer for Person Re-identification. In 1st International Workshop on Re-Identification (Re-Id 2012) In conjunction with ECCV 2012, LNCS 7583,, pp. 381–390, 2012. BibTeX    
  3. Glazer, A., Lindenbaum, M., and Markovitch, S.. Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data. In The 26th Conference on Neural Information Processing Systems (NIPS-2012), pp. 737–745, 2012. BibTeX    
  4. Glazer, A., Lindenbaum, M., and Markovitch, S.. One-Class Background Model. In 1st ACCV Workshop on Background Models Challenge (BMC), pp. 301–307, 2012. BibTeX    
  5. Glazer, A., Lindenbaum, M., and Markovitch, S.. Feature Shift Detection. In 21st International Conference on Pattern Recognition (ICPR-2012), pp. 1383–1386, 2012. BibTeX    
  6. Lindenbaum, M., Markovitch, S., and Rusakov, D.. Selective Sampling for Nearest Neighbor Classifiers. Machine Learning, 54(2):125–152, 2004. BibTeX    
  7. Lindenbaum, M., Markovitch, S., and Rusakov, D.. Selective Sampling for Nearest Neighbor Classifiers. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 366–371, Orlando, Florida, 1999. BibTeX    
Back to Top

Miaskouvskey, A.

  1. Miaskouvskey, A., Gousseau, Y., and Lindenbaum, M.. Beyond independence: An extension of the a contrario decision procedure. In Int. J. Computer Vision, pp. 22–44, 2013. BibTeX    
Back to Top

Moses, Y.

  1. Shimshoni, I., Moses, Y., and Lindenbaum, M.. Shape Reconstruction of 3D Bilaterally Symmetric Surfaces. Int. J. of Computer Vision, 39(2):97–110, 2000. BibTeX    
  2. Shimshoni, I., Moses, Y., and Lindenbaum, M.. Auto Photometric/Geometric Stereo from a Single Image orClass Based Reconstruction of Bilaterally Symmetric Objects. In ICIAP, pp. 76–81, 1999. BibTeX    
Back to Top

Murase, H.

  1. Murase, H. and Lindenbaum, M.. Spatial Temporal adaptive Method for partial EigenstructureDecomposition of Large Image Matrices. IEEE Transactions on Image Processing, IP-4(5):620–629, 1995. BibTeX    
Back to Top

Osadchy, M.

  1. Osadchy, M., Jacobs, D., and Lindenbaum, M.. Surface Dependent Representations for Illumination Insensitive Image Comparison. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(1):98–111, January 2007. BibTeX    
  2. Osadchy, M., Jacobs, D., and Lindenbaum, M.. On the Equivalence of Common Approaches to Lighting Insensitive Recognition. In Proc. Int. Conference on Computer Vision - ICCV05, pp. II: 1721–1726, 2005. BibTeX    
  3. Osadchy, M., Lindenbaum, M., and Jacobs, D.. Whitening for Photometric Comparison of Smooth Surfaces under VaryingIllumination. In Proc. of the 8th European Conference on Computer Vision - ECCV04, pp. 217–228, 2004. BibTeX    
Back to Top

Osdachy, R.

  1. Osdachy, R., Lindenbaum, M., and Jacobs, D.J.. Whitening for photometric comparison of smooth surfaces. In Int'l Workshop on Statistical and Computational Theories in Vision, 2003. BibTeX    
Back to Top

Peles, D.

  1. Peles, D. and Lindenbaum, M.. A Segmentation Quality Measure Based on Rich Descriptors and Classification Methods. In SSVM, pp. 398–410, 2011. BibTeX    
Back to Top

Polak, S.

  1. Kolomenkin, M., Polak, S., Shimshoni, I., and Lindenbaum, M.. A Geometric Voting Algorithm for Star Trackers. IEEE Trans. on Aerospace and Electronic Systems, 44(2):441–456, 2008. BibTeX    
Back to Top

Porat, M.

  1. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. IEEE Transactions on Image Processing, IP-6(9):1305–1315, 1997. BibTeX    
  2. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 93–97, 1994. BibTeX    
  3. Katzir, N., Lindenbaum, M., and Porat, M.. Curve Segmentation under Partial Occlusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 16(5):513–519, May 1994. BibTeX    
  4. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity-Invariant Signatures for Partially Occluded Planar Shapes. Int. J. of Computer Vision, 7(3):271–285, April 1992. BibTeX    
  5. Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M.. Similarity Invariant Recognition of Partially Occluded Curves and Shapes. In Proc. 7th Israeli Conference on Artificial Intelligence Vision and Pattern Recognition, Tel-Aviv, 1990. Also in \em Proc. National Conference on Data Processing, Jerusalem, November 1992. BibTeX    
  6. Katzir, N., Lindenbaum, M., and Porat, M.. Planar curve segmentation for recognition of partially occluded shapes. In Proc. 10th Int. Conf. Pattern Recognition (ICPR), pp. 842–846, Atlantic City, June 1990. BibTeX    
Back to Top

Sandler, R.

  1. R. Sandler and Lindenbaum, M.. Nonnegative Matrix Factorization with Earth Mover's Distance Metric for Image Analysis. IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1590–1602, 2011. BibTeX    
Back to Top

Rivlin, E.

  1. Leichter, I., Lindenbaum, M., and Rivlin, E.. Mean Shift Tracking with Multiple Reference Color Histograms. Comp. Vis. Im. Understanding, 114(3):400–408, 2010. BibTeX    
  2. Leichter, I., Lindenbaum, M., and Rivlin, E.. Tracking by Affine Kernel Transformations Using Color and Boundary Cues. \em IEEE Trans. Pattern Analysis and Machine Intelligence, 31(1):164–173, 2009. BibTeX    
  3. Leichter, I., Lindenbaum, M., and Rivlin, E.. Bittracker - A Bitmap Tracker for Visual Tracking under Very General Conditions. IEEE Trans. Pattern Analysis and Machine Intelligence, 30(9):1572–1588, 2008. BibTeX    
  4. Leichter, I., Lindenbaum, M., and Rivlin, E.. Visual Tracking by Affine Kernel Fitting Using Color and Object Boundary. In Proc. IEEE International Conference on Computer Vision (ICCV'07), 2007. BibTeX    
  5. Leichter, I., Lindenbaum, M., and Rivlin, E.. A General Framework for Combining Visual Trackers -- The “Black Boxes” Approach. Int. J. of Computer Vision, 67(3):343–363, 2006. BibTeX    
  6. Leichter, I., Lindenbaum, M., and Rivlin, E.. Bittracker - A Bitmap Tracker for Visual Tracking under Very General Conditions. In IEEE International Workshop on Visual Surveillance (ECCV workshop), pp. 17–24, 2006. BibTeX    
  7. Leichter, I., Lindenbaum, M., and Rivlin, E.. A probabilistic framework for combining tracking algorithms. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR04, pp. II: 445–451, 2004. BibTeX    
  8. Leichter, I., Lindenbaum, M., and Rivlin, E.. A probabilistic cooperation between trackers of coupled objects. In International Conference on Image Processing - ICIPO4, pp. 1045 – 1048, 2004. BibTeX    
Back to Top

Rozenfeld, S.

  1. Rozenfeld, S., Shimshoni, I., and Lindenbaum, M.. Dense Mirroring Surface Recovery from 1D Homographies and Sparse Correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2):325–337, 2011. BibTeX    
  2. Rozenfeld, S., Shimshoni, I., and Lindenbaum, M.. Dense mirroring surface recovery from 1D homographies and sparse correspondences. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR07, 2007. BibTeX    
Back to Top

Rudshtein, A.

  1. Rudshtein, A. and Lindenbaum, M.. Quantifying the performance of feature-based recognition. In International Conference on Pattern Recognition, pp. 35–39, 1996. BibTeX    
Back to Top

Rusakov, D.

  1. Lindenbaum, M., Markovitch, S., and Rusakov, D.. Selective Sampling for Nearest Neighbor Classifiers. Machine Learning, 54(2):125–152, 2004. BibTeX    
  2. Lindenbaum, M., Markovitch, S., and Rusakov, D.. Selective Sampling for Nearest Neighbor Classifiers. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 366–371, Orlando, Florida, 1999. BibTeX    
Back to Top

Salman, M.

  1. Salman, M. and Lindenbaum, M.. A Layered Representation for Model-Based Filtering and Recognition. In Proc. of the 13th International Conference on Pattern Recognition - ICPR98, pp. 643–647, 1998. BibTeX    
Back to Top

Samet, H.

  1. Lindenbaum, M., Samet, H., and Hjaltason, G.R.. A Probabilistic Analysis of Trie-Based Sorting ofLarge Collections of Line Segments in Spatial Databases. SIAM Journal on Computing, 35(1):22–58, 2005. BibTeX    
  2. Lindenbaum, M. and Samet, H.. Probabilistic analysis of Geometric Hierarchical Data Structures. In Proc. 10th Int. Conf. Pattern Recognition (ICPR), Atlantic City, June 1990. BibTeX    
Back to Top

Sandler, R.

  1. Sandler, R. and Lindenbaum, M.. Optimizing Gabor Filter Design for Texture Edge Detection and Classification. Int. J. of Computer Vision, 84(3):308–324, 2009. BibTeX    
  2. Sandler, R. and Lindenbaum, M.. Nonnegative Matrix Factorization with Earth Movers Distance metric. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR09, 2009. BibTeX    
  3. Sandler, R. and Lindenbaum, M.. Unsupervised estimation of segmentation quality using nonnegative factorization. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR08, 2008. BibTeX    
  4. Sandler, R. and Lindenbaum, M.. Gabor Filters Design for Texture Discrimination. In IEEE Workshop on Perceptual Organization in Computer Vision (CVPR workshop), pp. 178, 2006. BibTeX    
Back to Top

Sharir, M.

  1. Efrat, A., Lindenbaum, M., and Sharir, M.. Finding Maximally Consistent Sets of Halfspaces. In Proceedings of the Fifth Canadian Conference on Computational Geometry, pp. 432–436, 1992. BibTeX    
Back to Top

Shimshoni, I.

  1. Rozenfeld, S., Shimshoni, I., and Lindenbaum, M.. Dense Mirroring Surface Recovery from 1D Homographies and Sparse Correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2):325–337, 2011. BibTeX    
  2. Kolomenkin, M., Polak, S., Shimshoni, I., and Lindenbaum, M.. A Geometric Voting Algorithm for Star Trackers. IEEE Trans. on Aerospace and Electronic Systems, 44(2):441–456, 2008. BibTeX    
  3. Rozenfeld, S., Shimshoni, I., and Lindenbaum, M.. Dense mirroring surface recovery from 1D homographies and sparse correspondences. In Proc. IEEE Conf. Computer Vision and Pattern Recognition - CVPR07, 2007. BibTeX    
  4. Shimshoni, I., Moses, Y., and Lindenbaum, M.. Shape Reconstruction of 3D Bilaterally Symmetric Surfaces. Int. J. of Computer Vision, 39(2):97–110, 2000. BibTeX    
  5. Shimshoni, I., Moses, Y., and Lindenbaum, M.. Auto Photometric/Geometric Stereo from a Single Image orClass Based Reconstruction of Bilaterally Symmetric Objects. In ICIAP, pp. 76–81, 1999. BibTeX    
Back to Top

Smeulders, A.W.M.

  1. Engbers, E.A., Lindenbaum, M., and Smeulders, A.W.M.. An Information-Based Measure for Grouping Quality. In Proc. of the 8th European conference on Computer Vision - ECCV04, pp. 392–404, 2004. BibTeX    
Back to Top

Toledano, M.

  1. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A., and Beyar, R.. Artificial Intelligence based system for Automatic Detection of Coronary Artery Stenoses using Multidetector CT Coronary Angiography. In American Heart Association Conference, 2005. (abstract) BibTeX    
Back to Top

Wagner, I.A.

  1. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. ANTS: Agents, Networks, Trees, and Subgraphs. In pp. 915–926, North Holland, 2000. BibTeX    
  2. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. MAC vs. PC - Determinism and Randomness as Complementary Approaches to Robotic Exploration of Continuous Unknown Domains. International Journal of Robotics Research, 19(1):12–31, 2000. BibTeX    
  3. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Distributed Covering by Ant-Robots using Evaporating Traces. IEEE Transactions on Robotics and Automation, 15(5):918–933, 1999. BibTeX    
  4. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Efficiently Searching a Graph by a Smell Oriented Vertex Process. Annals of Mathematics and Artificial Intelligence, 24:211–223, 1998. BibTeX    
  5. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Robotic Exploration, Brownian Motion and Electrical Resistance. In Random'98, 2nd International Workshop on Randomization andApproximation Techniques in Computer Science, pp. 116–130, Barcelona, 1998. BibTeX    
  6. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Efficiently Exploring a Continuous Unknown Domain by an Ant-Inspired Process. In ANTS'98 - From Ant Colonies to Artificial Ants: 1st International Workshop on Ant Colony Optimization , Brussels, October 1998. BibTeX    
  7. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. On-Line Graph Searching by a Smell-Oriented Vertex Process. In AAAI-97 Workshop on On-line search, pp. 122–125, 1997. BibTeX    
  8. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Smell as a Computational Resource - A Lesson We Can Learn from the Ant. In Proc. ISTCS'96 - 4th Israel Symposium on the Theory of Computing and Systems, pp. 219–230, 1996. BibTeX    
  9. Wagner, I.A., Lindenbaum, M., and Bruckstein, A.M.. Ant-Algorithms for Cooperative Search in the Presence of Sensing-Errors. In Proc. 26th Israeli Conf. on Mechanical Engineering, 1996. BibTeX    
Back to Top

Weissbrod, O

  1. Glazer, A, Weissbrod, O, Lindenbaum, M, and Markovitch, S. Hierarchical MV-sets for Hierarchical Clustering. In The 28th Conference on Neural Information Processing Systems (NIPS-2014), 2014. BibTeX    
Back to Top

Yeshurun, Y.

  1. Avraham, T., Yeshurun, Y., and Lindenbaum, M.. Visual searchModeling Combined Proximity-Similarity Effects in Visual Search. J. Vision, 11(11), 2011. BibTeX    
  2. Yeshurun, Y., Avraham, T., and Lindenbaum, M.. Evaluating the ability of visual search models suggested for computer-vision to predict human performance. In Proc. Vision Science Society Annual Meeting (VSS07), pp. 722, 2007. (abstract) BibTeX    
  3. Avraham, T., Yeshurun, Y., and Lindenbaum, M.. Predicting Visual-Search Performance by Quantifying Stimuli Similarities. Journal of Vision, 2006. BibTeX    
Back to Top

Yokozawa, K.

  1. Yokozawa, K. and Lindenbaum, M.. The effect of popout distracter in serial search. In Proceedings of the Japanese Cognitive Science Society 9th Annual Meeting, Chukyo University, Toyota city, May 1992. (in Japanese) BibTeX    
  2. Yokozawa, K. and Lindenbaum, M.. A Popout Distracter Impairs the Visual Search Performance. In Proc. of the Third International Conference on Visual Search, 1992. BibTeX    
Back to Top

Zeevi, Y.Y.

  1. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. IEEE Transactions on Image Processing, IP-6(9):1305–1315, 1997. BibTeX    
  2. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y.. The Farthest Point Strategy for Progressive Image Sampling. In Proceedings of the 12th International Conference on Pattern Recognition, pp. 93–97, 1994. BibTeX    
Back to Top

Generated by bib2html.pl (written by Patrick Riley ) on Tue Dec 30, 2014 15:41:24